
# КРИТЕРИИ ВЫБОРА ВЗРЫВОЗАЩИЩЕННОГО ЭЛЕКТРООБОРУДОВАНИЯ ОТЗАВОДА WEG



#### Что такое АТЕХ?

Это смесь горючих веществ (газов, паров, аэрозолей или пыли) с воздухом при атмосферных условиях, способная стать причиной опасного взрыва при воспламенении.





#### Когда появляется АТЕХ?

#### Условие 1

Необходимо наличие двух веществ: поддерживающего горение и горючего.

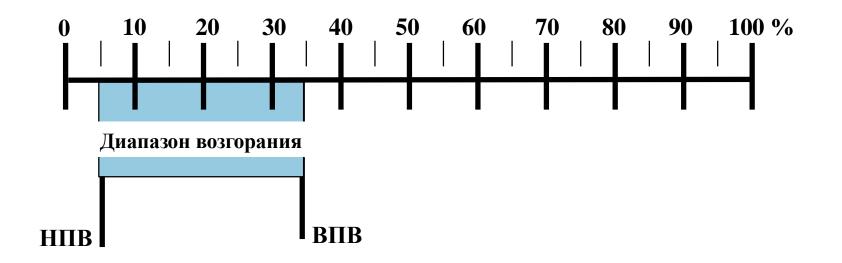
- Кислород воздуха (O<sub>2</sub>) это вещество, поддерживающее горение.
- **Воспламеняющиеся вещества это горючее вещество**. (Горючее вещество может иметь форму газа, паров или пыли)

#### Условие 2

Чтобы взорваться, смесь не должна содержать слишком много или слишком мало горючего вещества:

- ВПВ верхний предел взрывоопасности газа или паров в воздухе.
- НПВ нижний предел взрывоопасности горючего вещества.

#### НПВ < концентрация горючего вещества < ВПВ


## Weg

## НПВ < концентрация горючего вещества < ВПВ

В зависимости от вещества:

- НПВ более или менее низок.
- ВПВ более или менее высок.







## Горючие вещества

Примеры горючих веществ, которые образуют АТЕХ в смеси с воздухом:

| Газы    | Пары        | Пыль          |
|---------|-------------|---------------|
| Метан   | Сероуглерод | Алюминий      |
| Бутан   | Этилен      | Крахмал       |
| Пропан  | Этиленоксид | Зерно         |
| Водород | Ацетон      | Угольная пыль |



## Примеры пределов взрывоопасности для газов и паров

| Газ/пары        | НПВ (%) | ВПВ (%) |
|-----------------|---------|---------|
| Ацетон          | 2,6     | 13      |
| Ацетилен        | 2,5     | 100     |
| Бутан           | 1,8     | 8,4     |
| Этиленоксид     | 3,5     | 100     |
| Этилен          | 2,7     | 36      |
| Пропилен оксид  | 2,8     | 37      |
| Оксид углерода  | 2,5     | 74      |
| Этанол          | 3,3     | 19      |
| Газолин         | 1,2     | 7,1     |
| Диэтиловый эфир | 1,9     | 36      |
| Водород         | 4       | 75      |
| Метан           | 5       | 15      |



## Примеры пределов взрывоопасности для пыли

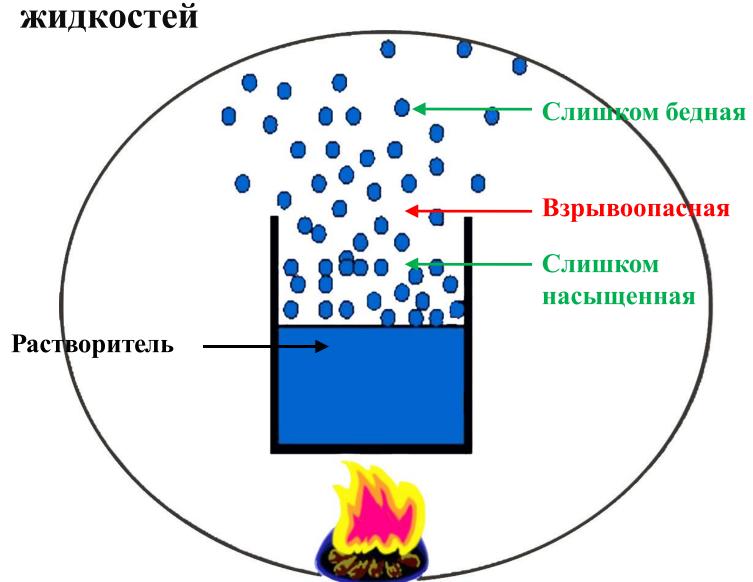
| Облако пыли                      | Минимальная концентрация, вызывающая взрыв (г/м³) |
|----------------------------------|---------------------------------------------------|
| Тонер                            | 60                                                |
| Алюминиевый порошок              | 40                                                |
| Эпоксидная смола                 | 20                                                |
| Древесный уголь                  | 140                                               |
| Пшеничный крахмал                | 25                                                |
| Caxap                            | 45                                                |
| Витамин С (аскорбиновая кислота) | 70                                                |
| Какао                            | 75                                                |



### Частный случай: горючие жидкости

Температура горючей жидкости должна быть достаточно высокой, чтобы выделилось достаточное количество паров.

**Точка вспышки** горючей жидкости - это температура, при которой жидкость дает достаточное количество паров, которые в смеси с воздухом образуют горючую смесь.


Чтобы находиться в диапазоне воспламеняемости, смесь паров с воздухом должна отвечать следующим условиям:

Тжилк. > Точка вспышки





Пределы взрывоопасности горючих





# **Некоторые примеры значений точки вспышки (паров)**

| Жидкость        | Точка вспышки |
|-----------------|---------------|
| Диэтиловый эфир | −45 °C        |
| Пропилен оксид  | −37 °C        |
| Бензин (оі 100) | −37 °C        |
| Сероуглерод     | −30 °C        |
| Ацетон          | −18 °C        |
| Спирт, 100 %    | 13 °C         |
| Газолин         | −43 °C        |



## Как АТЕХ может взорваться?

Воспламенение ATEX может быть вызвано внесением в смесь **источника возгорания**:

#### Вещество, поддерживающее горение

О<sub>2</sub> в атмосфере присутствует всегда



#### Горючее вещество

Взрывчатый газ, пары, облако или слой пыли

#### Источник возгорания

Электрическое оборудование или источник тепла



### Внесение источника возгорания

Источником возгорания, способным вызвать взрыв, может быть источник с достаточно высокой энергией или температурой.

МЭВ: минимальная энергия возгорания Минимальная энергия, которая должна быть передана смеси в виде

пламени или искры, чтобы вызывать возгорание.

Если энергия, поступающая от внешнего источника

> MЭB

ТСВ: температура самовозгорания

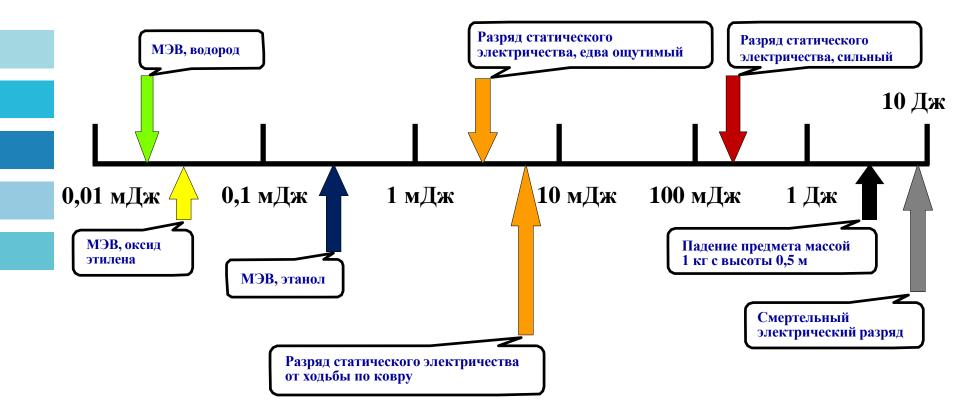
Если  $T_{cmecu} > TCB$ 



## Примеры значений МЭВ для газов и паров

| Газ/пары    | МЭВ (мкДж) | Группа газов |
|-------------|------------|--------------|
| Метан       | 300        | I            |
| Бутан       | 250        | IIA          |
| Этанол      | 140        | IIA          |
| Этилен      | 70         | IIB          |
| Этиленоксид | 60         | IIB          |
| Водород     | 17         | IIC          |
| Сероуглерод | 15         | IIC          |

- Энергия искры автомобильной свечи зажигания около 1 Дж.
- Одна лампочка мощностью 40 Вт, включенная в течение минуты, потребляет 2400 Дж.




## Примеры значений МЭВ для пыли

| Пыль                | МЭВ (мкДж) |
|---------------------|------------|
| Тонер               | < 10       |
| Алюминиевый порошок | 15         |
| Эпоксидная смола    | 15         |
| Древесный уголь     | 20         |
| Пшеничный крахмал   | 25         |
| Caxap               | 30         |
| Витамин С           | 60         |
| Какао               | 100        |



### Некоторые примеры значений энергии





## Примеры значений ТСВ для газов и паров

| Газ/пары        | Температура возгорания (°С) |
|-----------------|-----------------------------|
| Водород         | 560                         |
| Ацетон          | 465                         |
| Бензин (оі 100) | 460                         |
| Этиленоксид     | 430                         |
| Этанол          | 363                         |
| Бутан           | 287                         |
| Диэтиловый эфир | 160                         |
| Сероуглерод     | 102                         |



## **Некоторые примеры значений ТСВ для** пыли

| Пыль                      | Температура<br>самовозгорания (°C) |
|---------------------------|------------------------------------|
| Алюминиевый порошок       | 590                                |
| Крахмал                   | 345                                |
| Цинковый ророшок          | 460                                |
| Этиленгликоль             | 398                                |
| Сырая нефть               | 550                                |
| Нитроглицерин             | 254                                |
| Сосновая древесина, сухая | 427                                |



### Распространение взрыва

#### Выброс пламени

- Распространение горения благодаря теплопроводности.
- Скорость распространения: от 0,5 до 10 м/с.
- Избыточное давление: несколько бар.

#### Детонация

- Распространение горения ударной волной.
- Скорость распространения: выше 1000 м/с.
- Избыточное давление: около нескольких порядков бар.



## Какие горючие вещества наиболее опасны?

Опасность смеси горючего вещества с воздухом зависит от его концентрации и свойств. Необходимо классифицировать эти горючие вещества по степени их опасности.

Имеются две различные классификации (для газов и паров)

- группы (или подразделы) газов;
- температурные классы.



## Группы газов

Оборудование, предназначенное для использования во взрывоопасной атмосфере, делится на группы или подразделы:





## Температурные классы

Разные вещества могут возгораться при разной температуре. Чем ниже температура возгорания вещества, тем более оно опасно.

| Газ/пары        | Температура<br>возгорания (°C) |    |           |
|-----------------|--------------------------------|----|-----------|
| Водород         | 560                            |    |           |
| Метан           | 537                            |    |           |
| Ацетон          | 465                            |    |           |
| Этиленоксид     | 430                            | Bo | зрастание |
| Этанол          | 363                            |    | риска     |
| Бутан           | 287                            |    |           |
| Диэтиловый эфир | 160                            |    |           |
| Сероуглерод     | 102                            |    |           |



## Температурные классы

Оборудование, предназначенное для использования во взрывоопасной атмосфере, делится на классы от T1 до T6 в зависимости от создаваемой им максимальной температуры поверхности.

| Температурный класс | Максимальное<br>значение (°C) |
|---------------------|-------------------------------|
| T1                  | 450                           |
| T2                  | 300                           |
| Т3                  | 200                           |
| T4                  | 135                           |
| T5                  | 100                           |
| Т6                  | 85                            |

Источник: IEC 60079-0

Например, оборудование с максимальной температурой поверхности около 105 °C будет отнесено к классу Т4. Пользователь должен проверить, соблюдается ли для ATEX условие Т4 (135 °C) < TCB (ТСВ - температура самовозгорания).



## Температурные классы

Температурный класс O CE1180  $-40^{\circ}$ C to  $40^{\circ}$ C Supply cable min. temp. 80°C Umax=6600V Imax=315A INERIS10ATEX0006X WEGeuro INDUSTRIA ELECTRICA, S.A.

Rua Eng. Frederico Ulrich Sector V Apartado 6074 CP:4476-908 MAIA PORTUGAL



#### Пять видов пыли АТЕХ

Взрывоопасная атмосфера, содержащая пыль, отличается от взрывоопасной атмосферы, содержащей газы.

- В этом случае взрывается облако пыли.
- Вентиляция может оказывать разнообразное воздействие.
- Риски также зависят:
  - от гранулометрического состава;
  - влажности.
- Взрывоопасную атмосферу, содержащую пыль, нелегко обнаружить.



## Составляющие пылевого взрыва

Чтобы пыль взорвалась, необходимо соблюдение следующих условий для самой пыли и ее окружения:

- Пыль должна быть горючей.
- Она должна быть летучей и легко распределяться в воздухе.
- Пыль должна иметь размер, подходящий для возгорания.
- Концентрация пыли должна быть во взрывоопасном интервале.
- Необходим источник возгорания.
- В воздухе должно быть достаточно кислорода, чтобы вызвать взрыв.



### Составляющие пылевого взрыва

Взрыв пыли происходит при наличии необходимых условий возгорания (так называемого «треугольника возгорания»). Треугольник составляют:

- источник горючего (горючей пыли);
- **источник тепла или пламени** (например, электростатический разряд, дуговой разряд, горячая поверхность, сварочная окалина, нагрев от трения или огонь);
- окислитель (кислород в воздухе).

Наличие двух дополнительных элементов создает условия, более благоприятные для взрыва горючей пыли:

- **Рассеивание пылевых частиц** в воздухе с концентрацией и количеством, достаточными для создания облака пыли.
- **Нахождение облака пыли** внутри замкнутого пространства. При воспламенении облако пыли мгновенно вспыхивает и может взорваться.



## Пятиугольник взрыва пыли



Во избежание взрыва нужно убрать один из углов пятиугольника.



### Взрывы пыли

- Первоначальный (исходный) взрыв в технологическом оборудовании или в месте накопления летучей пыли может привести к сотрясению дополнительных скоплений пыли.
- Эта дополнительная пыль поднимается в воздух и может стать причиной вторичных взрывов.
- Они могут намного более разрушительными, чем первоначальный взрыв.



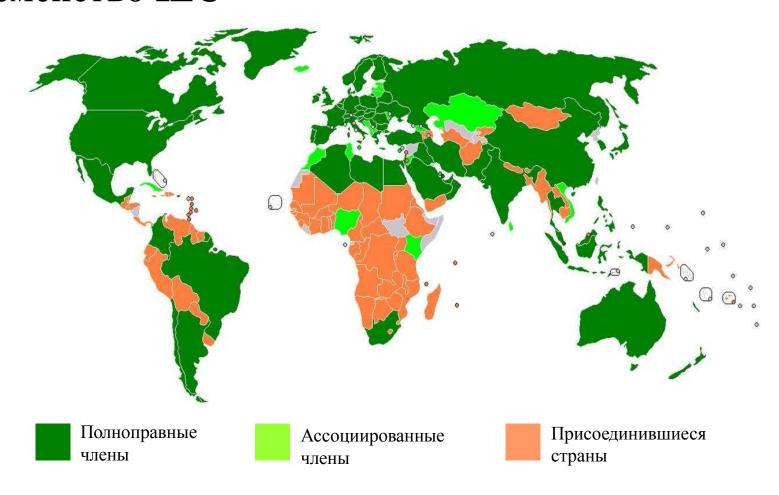


## Мир стандартов

#### Международные

Международная электротехническая комиссия Международная организация по стандартизации (ISO) Международная организация по законодательной метрологии (OIML) Международный союз электросвязи (ITU)

#### Региональные


Африка (напр., ARSO, SADC) Америка (напр., COPANT, MERCOSUR) Азиатско-Тихоокеанский регион (напр., ASEAN, PASC) Европа (напр., CEN, CENELEC, ETSI)

#### Национальные органы и комитеты

(напр., SPRING и SG NC в Сингапуре, JISC и JSA в Японии)



## Семейство IEC





#### **Cxema IECEx**

#### Цели

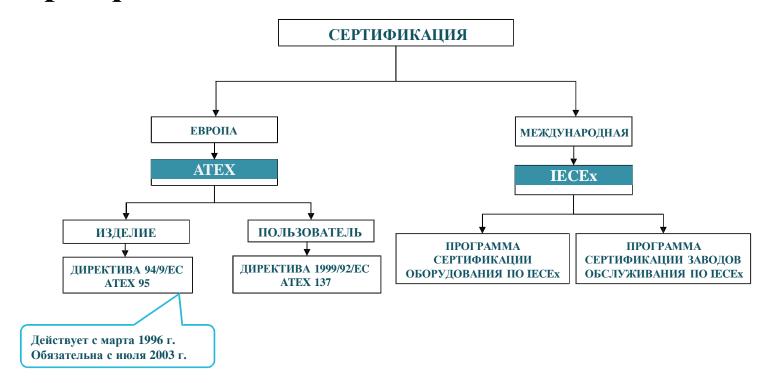
Содействие международной торговле оборудованием и услугами, используемыми во взрывоопасной атмосфере с соблюдением необходимого уровня безопасности:

- снижение затрат на испытания и сертификацию для производителя;
- сокращение срока вывода на рынок;
- единообразие процесса оценки изделий в мировом масштабе;
- единая международная база данных;
- гарантия качества продукции и услуг, сертифицированных по IECEx, в мировом масштабе.



#### Cxema IECEx

Эта система включает:


- Технические отчеты IECEx (Ex TR);
- Отчеты по оценке качества (QAR) IECEx;
- Сертификат соответствия (СоС) ІЕСЕх.

Чтобы получить такой сертификат, производитель составляет заявку и подает ее в орган сертификации IECE (ExCB).

ExCB проводит испытание образцов оборудования и организует инспектирование производства. Периодически проводимые аудиты (инспектирование производства) гарантируют, что производитель все время неотступно соблюдает жесткие требования стандарта.



## Сертификация для АТЕХ и ІЕСЕх





## Назначение и область действия директивы 1999/92/EC

#### Назначение Директивы 1999/92/ЕС

Улучшить защиту в отношении безопасности и охраны труда работников, которые могут подвергаться риску из-за наличия взрывоопасной атмосферы (ATEX).

#### Область действия

Директива применима к установкам, в которых используются горючие газы и может возникать взрывоопасная атмосфера (включая установки в «малых и средних» компаниях).

#### Дата вступления в силу

30 июня 2003 г.



### Предотвращение взрывов и защита от них

Учитывая необходимость профилактики взрывов и защиты от них, работодатель обязан принять технические и (или) организационные меры согласно характеру деятельности, опираясь при этом на следующие базовые принципы:

- Предотвращение образования взрывоопасной атмосферы или, если характер деятельности не позволяет этого, предотвращение возможностей возгорания в таких атмосферах.
- Смягчение негативных последствий взрыва, чтобы гарантировать охрану труда и безопасность работников.

Эти меры при необходимости должны сочетаться с мерами, препятствующими распространению взрыва, и дополняться ими; их следует пересматривать на регулярной основе и в случае существенных изменений.



### Оценка риска взрыва

Работодатель обязан оценить конкретные риски, связанные с взрывоопасной атмосферой, принимая во внимание по крайней мере следующее:

- вероятность того, что взрывоопасная атмосфера может возникнуть и сохраняться в течение некоторого времени;
- вероятность того, что могут присутствовать источники воспламенения, например электростатический разряд, и что они будут активны и смогут поджечь смесь;
- установки, используемые вещества и процессы, а также их возможное взаимодействие;
- масштабы ожидаемых последствий.

Следует оценить риски возможности взрыва в целом.





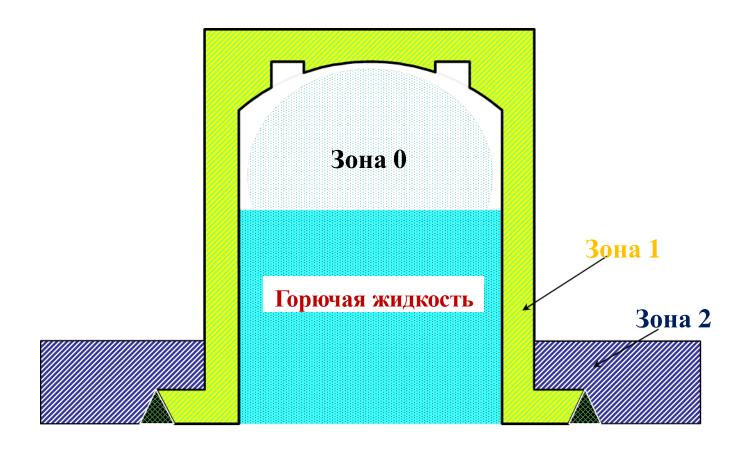
Зона 2 - зоны, которые не классифицированы как зона 1. Зона, в которой взрывоопасная атмосфера в виде смеси горючих веществ (газа, пара или аэрозоля) с воздухом не может возникнуть при нормальной работе, а если и возникнет, то будет сохраняться только в течение короткого периода.

**Зона 1** - зоны, которые не классифицированы как зона 0. Область, в которой взрывоопасная атмосфера в виде смеси горючих веществ (газа, пара или аэрозоля) с воздухом может возникнуть при нормальной работе.

Зона 0 - зоны, в которых взрывоопасная атмосфера в виде смеси горючих веществ (газа, пара или аэрозоля) с воздухом часто возникает при нормальной работе или присутствует постоянно.

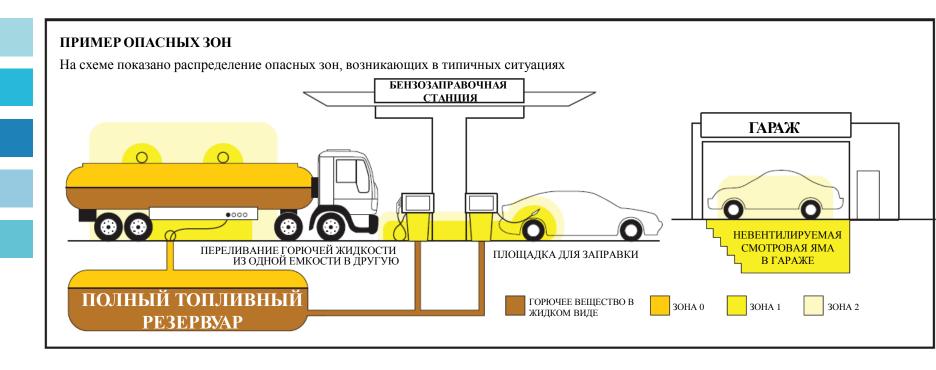
# Классификация участков с возможным возникновением взрывоопасной атмосферы - пыль




Зона 22 - зоны, которые не классифицированы как зона 21. Зоны, в которых горючая пыль может часто возникать и кратковременно присутствовать, или зоны, в которых взрывоопасная пылевоздушная смесь может возникать только при аномальных условиях работы.

**Зона 21** - зоны, которые не классифицированы как зона 20. Зоны, в которых горючая пыль может возникать при нормальных условиях работы в количестве, достаточном для создания взрывоопасной пылевоздушной смеси

**Зона 20** - при нормальных условиях работы пыль присутствует постоянно или часто в таких количествах, которые достаточны для получения взрывоопасной пылевоздушной смеси.




## Распределение зон - газ





## Распределение зон - газ





## Пример зонирования для зернохранилища

При хранении зерна, а также при погрузке и выгрузке зерновозов возможно образование взрывоопасных смесей зерновой пыли с воздухом. Потенциально взрывоопасная атмосфера всегда присутствует внутри башенных зернохранилищ (зона 20). Вне башни и на транспортерах эта ситуация возникает только время

от времени, например при наполнении и опорожнении (зона 21). Зона 21 окружена зоной 22, в которой опасные пылевоздушные смеси могут образовываться только в случае поломки оборудования, что оценивается как очень редкая ситуация.

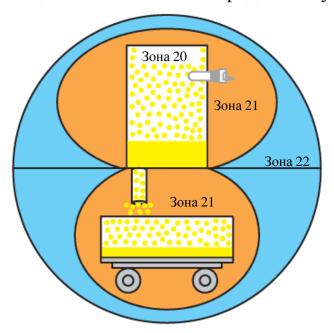



Схема возможного зонирования зернохранилища



## **Критерии выбора оборудования и защитных систем**

Выбирать оборудование для использования в зонах ATEX следует в соответствии с **Директивой 2014/34/EU** (G - gas(газ), D - dust(пыль)) :

Зона 0: II1G Зона 20: II1D

Зона 1: II2G Зона 21: II2D

Зона 2: II3G Зона 22: II3D



## **Критерии выбора оборудования и** защитных систем

Зона 2, зона 22 и категория 3

Случайное присутствие

Ex nA Ex tD A22

Зона 1, зона 21 и категория 2

Присутствие при обычной Ex d , Ex e, Ex de, Ex p эксплуатации Ex tD A21

Зона 0, зона 20 и категория 1 Постоянное присутствие Электродвигатели не разрешаются



## Маркировка

#### Примеры маркировки в соответствии с сертификацией АТЕХ и ІЕСЕх

EN / IEC 60079-0. Оборудование - общие требования (ATEX и IECEx)





## Маркировка

#### Примеры маркировки в соответствии с сертификацией АТЕХ и ІЕСЕх

EN / IEC 60079-31. Оборудование - защита оборудования корпусом от возгорания пыли - «t» (ATEX и IECEx)





## Тип защиты для опасных зон

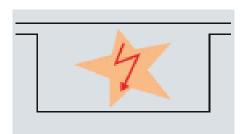
#### Определение

Особые меры в отношении электрооборудования, направленные на предотвращение возгорания окружающей взрывоопасной атмосферы.

| Символ | Обозначение                             | Цель                                                  |
|--------|-----------------------------------------|-------------------------------------------------------|
| Ex d   | Взрывозащита                            | Задерживает взрыв внутри, не допуская его             |
|        |                                         | распространение в окружающую среду                    |
| Ex de  | Взрывозащита с повышенной безопасностью | То же, что и Ex d, но клеммной коробке уделено особое |
|        | клеммной коробки                        | внимание (искробезопасный клеммник)                   |
| Ex e   | Повышенная безопасность                 | Предотвращает появление дугового или искрового        |
|        |                                         | разряда при обычной работе и при запуске              |
| Ex n   | Неискрящий                              | Предотвращает появление дугового или искрового        |
|        |                                         | разряда при обычной работе                            |
| Ex t   | Защита корпусом от возгорания пыли      | Предотвращает попадание горючей пыли внутрь           |
|        |                                         | двигателя и предусматривает средства ограничения      |
|        |                                         | нагрева поверхности                                   |
| Ex p   | Давление                                | Не позволяет взрывоопасной атмосфере попадать         |
| 1      |                                         | внутрь двигателя                                      |



### Тип защиты для опасных зон


## Защита типа «Ex d»



#### **Стандарт IEC 60079-1**

#### ПРИНЦИПЫ ЗАЩИТЫ ТИПА «Ex d»

Тип защиты, при которой узлы, способные воспламенить взрывоопасную газовую атмосферу, помещены в корпус, способный выдержать давление, развиваемое во время внутреннего взрыва взрывоопасной смеси, и предотвращающий передачу взрыва в атмосферу, окружающую корпус и содержащую взрывоопасный газ.



Ex d IIB (или C) T4

В соответствии с предыдущим стандартом

Ex d IIB (или C) T4 Gb Согласно последней версии стандарта

Типы защиты - Ex d II 2 G









#### Взрывозащищенные соединения

- 1. Нерезьбовые (статические)
- Центрирующие соединения
- Фланцевые соединения
- 2. Резьбовые (статические)
- Цилиндрические резьбовые соединения
- Конические резьбовые соединения
- 3. Цилиндрические резьбовые соединения (валы + внутренний зазор) (динамические)
- Цилиндрические соединения
- Лабиринтные соединения

Типы защиты - Ex d II 2 G









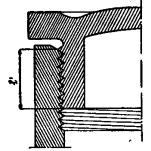
#### Нерезьбовые соединения

- Центрирующие соединения
- Фланцевые соединения

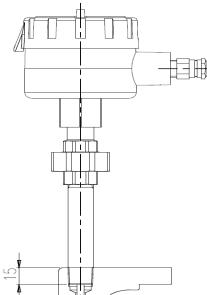


Центрирующее соединение



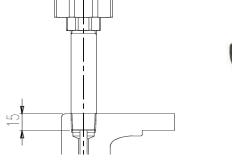

Фланцевое соединение




#### **Стандарт IEC 60079-1**

#### Резьбовые соединения

- Цилиндрические резьбовые соединения
- Конические резьбовые соединения




Цилиндрическое резьбовое соединение



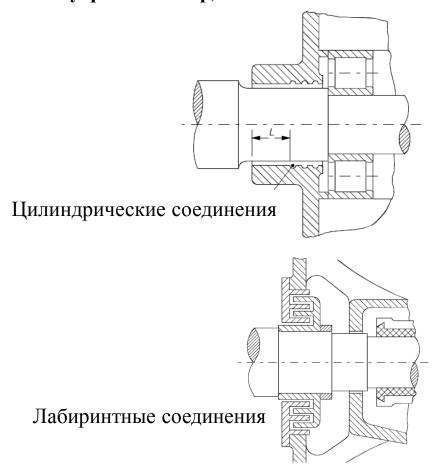
- Цилиндрические резьбовые соединения - резьба M, BSP/G

- Конические резьбовые соединения - NPT





Коническое резьбовое соединение

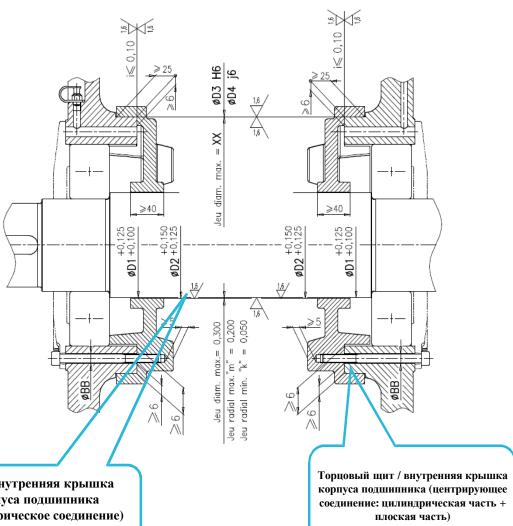



#### Цилиндрические резьбовые соединения (валы + внутренний зазор)

- Цилиндрические соединения
- Лабиринтные соединения










Примеры соединений

Цилиндрические соединения или центрирующие соединения

**Стандарт IEC 60079-1** 



Вал / внутренняя крышка корпуса подшипника (цилиндрическое соединение)



#### Взрывозащищенные соединения: общие требования

#### 1. Нерезьбовые соединения

- Ширина соединения (L) должна быть не менее минимального значения, приведенного в таблицах 1 и 2 стандарта IEC 60079-1.
- Зазор (i) ни при каких обстоятельствах не должен превышать максимальное значение, указанное в таблицах 1 и 2 стандарта IEC 60079-1.
- Средняя шероховатость Ra поверхности соединений должна быть менее 6,3 мкм.

#### 2. Резьбовые соединения

- Шаг > 0.7 мм\* для метрической резьбы.
- Количество сцепленных витков резьбы > 5 для метрической и конической резьбы.
- Глубина сцепления (объем > 100 см³) > 8 мм метрическая резьба.

- Поверхность соединений следует защищать от коррозии.
- Покрывать их краской или порошковым покрытием запрещено.
- Могут использоваться другие материалы покрытий, если было показано, что их нанесение не окажет отрицательного воздействия на взрывозащиту соединения.
- Можно использовать невысыхающую антикоррозионную смазку, не содержащую летучих растворителей и не вызывающую коррозию поверхностей соединения.

<sup>\*</sup> Если шаг резьбы превышает 2 мм, могут потребоваться специальные меры предосторожности при изготовлении (например, больше сцепленных витков резьбы).



#### Фундаментальные испытания

- Определение давления взрыва (опорного давления)
- Испытание избыточным давлением
  - Давление в полтора раза выше опорного или
  - Давление в четыре раза выше опорного Время приложения давления должно составлять от 10 до 60 с.
- Испытание на нераспространение при внутреннем воспламенении

Типы защиты - Ex d II 2 G



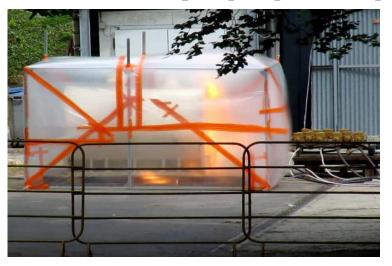






#### **Стандарт IEC 60079-1**

Определение опорного давления


20 раз взрывают внутреннюю часть 10 с DE и10 с NDE.

Проверяют деформируется ли корпус.






Испытание на нераспространение при внутреннем воспламенении











#### Фундаментальные испытания

#### Температурное испытание

Предназначено для определения максимальной температуры комплектующих и деталей при максимальной рабочей нагрузке (то есть с использованием заданных производителем номинальных параметров, связанных с максимальной температурой окружающей среды во время эксплуатации).

#### Максимальная температура поверхности

Испытание проводят при напряжении от 0,9 до 1,1 от номинального с целью определения максимальной температуры поверхности. Еще раз напоминаем: это касается максимальной температуры окружающей среды во время эксплуатации.

#### Типы защиты - Ex d II 2 G







Стандарт IEC 60079-1



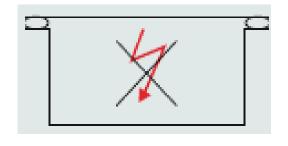
Испытание избыточным давлением (снимки разрушений)










## Защита типа «Ех е»



#### **Стандарт IEC 60079-7**

Тип защиты электрических аппаратов, при котором приняты дополнительные меры, чтобы обеспечить повышенную защиту от чрезмерных температур и возникновений дугового и искрового разрядов внутри и на внешних узлах электроаппарата

при нормальном режиме работы или при определенных аномальных условиях.



II 2 G Ex e II T4
II 2 G Ex e IIC T4 Gb

В соответствии с предыдущим стандартом Согласно последней версии стандарта



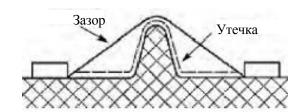












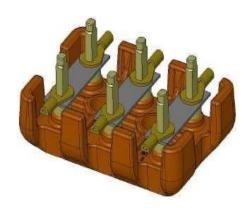

Повышенная безопасность «Ex e» (газ - II 2 G)





Подходит для зон 1 и 2






## Тип защиты для опасных зон Защита типа «Ex e»

#### Требования к электрическим соединениям

- Провода не должны выскальзывать из предназначенных для них мест во время затягивания винта или после вставки.
- Предусмотрите средства, предотвращающие ослабевание соединения в ходе эксплуатации.
- Обеспечьте положительное усилие сдавливания, чтобы обеспечить давление на контакт во время эксплуатации.
- При нормальной эксплуатации контакт несущественно ухудшается под действием температуры.
- Давление не должно прикладываться к контакту через изолятор.
- В каждую клемму разрешается вставлять только один провод.
- Соблюдайте заданный момент затяжки винтовых соединений.





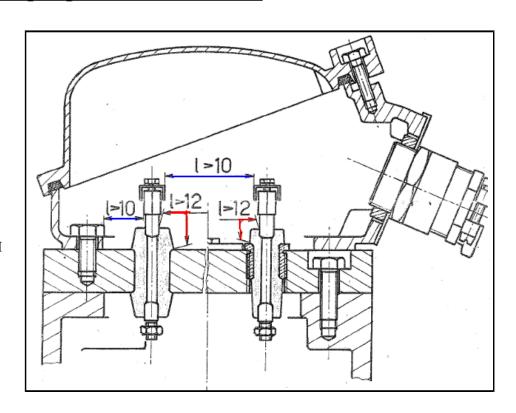


## Тип защиты для опасных зон Защита типа «Ex e»

**Стандарт IEC 60079-7** 

## <u>Требования, направленные на уменьшение вероятности возникновения</u> <u>горячих поверхностей и дуговых разрядов</u>

- Защита от проникновения воды и посторонних предметов (IP).
- Правильные зазоры для внутренних вентиляторов.
- Минимальный воздушный зазор.
- Проводники ротора должны надежно сидеть в своих гнездах и быть припаяны или приварены к замыкающим кольцам.
- Сборка ротора должна оцениваться на предмет искрения в воздушном зазоре.




## Тип защиты для опасных зон Защита типа «Ex e»

#### Разделение/изолирование электропроводящих частей

Расстояние утечки - наименьшее расстояние между двумя проводящими узлами вдоль поверхности твердого изолирующего материала.


**Зазор** - наименьшее расстояние между двумя электропроводящими деталями через воздух.





#### Стандарт IEC 60079-7

#### Разделение/изолирование электропроводящих частей



Каждый провод должен иметь изоляцию вплоть до клеммного наконечника.



#### Некоторые требования к обмоткам

**Стандарт IEC 60079-7** 

- Проводники должны иметь минимум два слоя изоляции.
- Пропитку следует выполнять согласно конкретным инструкциям производителя пропиточного вещества.
- Чувствительные элементы термодатчиков сопротивления, если они устанавливаются на обмотки, должны пропитываться вместе с обмотками.

#### Температурные ограничения

Все внутренние узлы, которые потенциально могут оказаться во взрывоопасной атмосфере, и внешние поверхности не должны нагреваться выше температуры возгорания конкретного газа как при нормальных условиях работы, так и в случае их нарушения.



#### Защита обмоток

#### **Стандарт IEC 60079-7**

Обмотки следует защищать при помощи подходящего устройства, чтобы гарантировать, что во время эксплуатации предельная температура не будет превышена.

## Предельные температуры для изолированных обмоток Температурный класс 130 155 18

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | температурный класс |         |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130                 | 155     | 180     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | КЛАСС В             | КЛАСС F | КЛАСС Н |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         |         |
| 1. Предельная температура при                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | °C                  | °C      | °C      |
| номинальных условиях                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120                 | 130     | 155     |
| , and the second |                     |         |         |
| а) обмотка с одним слоем изоляции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |         |         |
| б) другие изолированные обмотки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                 | 130     | 155     |
| 2. Ограничение температуры в конце                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 185                 | 210     | 235     |
| времени tE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |         |         |

При возникновении нестандартной ситуации двигатель следует отключать раньше, чем его внутренняя температура достигнет температурного класса двигателя.



#### Требования к обмоткам

#### **Стандарт IEC 60079-7**

#### Если номинальное напряжение превышает 1 кВ:

- Следует провести типовые испытания.
- Обмотки должны быть намотаны по шаблону и иметь изоляцию типа VPI (вакуумная пропитка) или резиносодержащую изоляцию.
- Машина должна быть оборудована антиконденсационными нагревателями.
- Конструкция должна предусматривать дополнительные меры, препятствующие попаданию взрывоопасного газа внутрь корпуса в момент пуска.

#### Возможные меры:

- —вентиляция перед пуском;
- —датчик газа внутри корпуса машины.



#### Дополнительные испытания для машин

**Стандарт IEC 60079-7** 

Система изоляции обмоток статора

Системы изоляции и соединительные кабели должны испытываться в среде испытательной взрывоопасной смеси с помощью синусоидального напряжения, превышающего среднеквадратичное значение линеного напряжения минимум в полтора раза не менее трех минут.

Испытательная взрывоопасная смесь не должна загореться.

Испытание можно проводить на одном полном статоре или на репрезентативной модели.

Короткозамкнутый ротор

**Процесс старения** включает по меньшей мере пять испытаний с заклиненным ротором. После старения

двигатель заполняется взрывоопасной испытательной смесью или погружается в нее.

Двигатели подвергаются 10 пускам при полном напряжении без нагрузки или 10 испытаниям с заклиненным ротором.

Испытательная взрывоопасная смесь не должна загореться.

Испытания должны проводиться на машине со статором и ротором, представляющей готовую машину в части сердечника и обмоток статора, а также сердечника и клетки ротора.



#### Маркировка и инструкции

**Стандарт IEC 60079-7** 

#### Общая маркировка

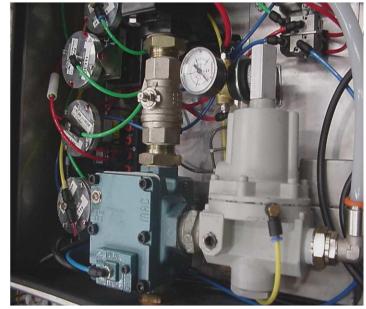
Помимо требований к маркировке, изложенных в стандарте IEC 600790, в маркировку готового изделия также входят:

- номинальное напряжение и номинальный ток или номинальная мощность;
- соотношение  $I_A/I_N$  и время  $t_E$ ;
- ограничения использования, например использование только в чистой среде;
- характеристики специальных защитных устройств, если необходимо.

#### Для клеммных коробок класса Ех:

- диапазон калибров провода;
- номинальное напряжение.

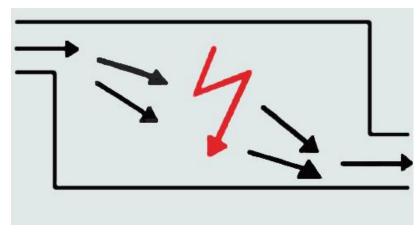



# Защита «Ех р»



# Защита «Ех р»

## Двигатели под давлением «Ex р...» (II 2 G или II 3 G)








#### Стандарт IEC 60079-2

При этом типе защиты попадание окружающей атмосферы внутрь корпуса электрического оборудования предотвращается путем создания избыточного давления. Избыточное давление может поддерживаться статически или потоком защитного газа.



Ex p II T4

В соответствии с предыдущим стандартом

Ex px IIC T4 Gb

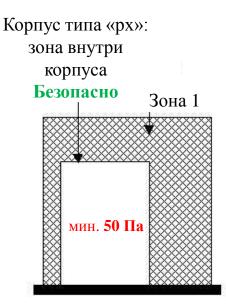
Согласно последней версии стандарта



# Тип защиты для опасных зон Защита «Ex p»

#### Принципы защиты типа Ех р

- В основном защита двигателей типа Ех р основывается на поддержании постоянного давления в корпусе или его на непрерывной продувке газом.
- Корпус должен продуваться перед запуском.


  Любой опасный газ, который может находиться в корпусе, должен быть удален
  - путем пропускания через корпус большого количества воздуха или инертного газа.
- По завершении продувки в нем поддерживается избыточное давление, не позволяющее опасным газам попасть внутрь. Теперь на оборудование можно подать напряжение.
  - Давление в корпусе двигателя должно поддерживаться на протяжении всего времени его работы.
- Если избыточное давление упадет до значения, указанного производителем, подача напряжения на двигатель должна прерваться.



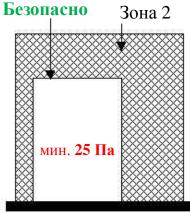
#### Избыточное давление, тип «рх»

#### Стандарт IEC 60079-2

Избыточное давление, которое снижает класс оборудования, заключенного в такой корпус, с зоны 1 до безопасного или с группы I до безопасного.



Минимальное избыточное давление должно составлять 50 Па относительно окружающего.




#### <u>Избыточное давление, тип «рz»</u>

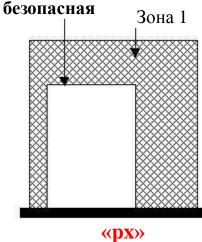
Стандарт IEC 60079-2

Избыточное давление, которое снижает класс оборудования, заключенного в такой корпус, с зоны 2 до безопасного.

# Корпус типа «pz»: зона внутри корпуса



Минимальное избыточное давление должно составлять 25 Па относительно окружающего.

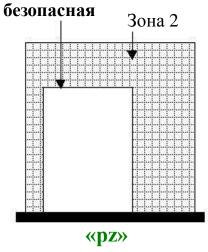



#### «рх» и «рz»

#### Стандарт IEC 60079-2

#### Корпус типа «рх»:

зона внутри корпуса квалифицируется как




С зоны 1 до безопасного II 2 G - Ex px II T4

В случае сброса избыточного давления

#### Корпус типа «рz»:

зона внутри корпуса квалифицируется как



С зоны 2 до безопасного

II 3 G - Ex pz II T4

В случае сброса избыточного давления сигнал тревоги



(Новый стандарт IEC 60079-7 Ex ec)



Неискрящие двигатели «Ex nA» (Газ - II 3 G)





#### Принципы защиты типа Ех п

#### Стандарт IEC 60079-15

Этот тип защиты подразумевает меры предосторожности, направленные на предотвращение образования искрового разряда и высокой температуры поверхности.

Во время обычной эксплуатации должен отсутствовать источник возгорания.

=> Использовать только в зоне 2.



II 3 G - Ex nA II T4

II 3 G - Ex nA IIB T3 Gc

В соответствии с предыдущим стандартом

Согласно последней версии стандарта



#### Стандарт IEC 60079-15

#### <u> Двигатели Ех nA — основные требования</u>

- Созданы для того, чтобы уменьшить вероятность образования искры и горячих поверхностей.
- Прежде чем приступать к работе с машиной, ее внутренние полости следует очистить при помощи инертного газа, чтобы предотвратить возможность возгорания.
- Достаточные зазоры для всех вращающихся частей.
- Максимальная температура поверхностей.
- Клеммы и платы не должны быть источником искры или дугового разряда.
- Контакты, не допускающие ослабления.
- Необходимо соблюдать минимальные зазоры и расстояния утечки.
- Такая конструкция обмоток, чтобы внутренние и внешние поверхности всегда имели температуру ниже той, что задана температурным классом двигателя.



#### Стандарт IEC 60079-15

#### Максимальная температура поверхности

Для электрооборудования типа nA (Ex ec (IEC 60079-7)) температура любого его узла, включая поверхности внутренних узлов, которые могут соприкасаться со взрывоопасной газовой атмосферой, не должна (при нормальных условиях работы) превышать предельное значение, обусловленное температурным классом оборудования.

**Оценка возможного искрового разряда в воздушном зазоре** Вращающиеся электрические машины с номинальной выходной мощностью свыше 100 кВт, не относящиеся к рабочему типу S1 или S2, должны проходить оценку на возможность искрового разряда в воздушном зазоре.



#### Эксплуатация с частотным конвертером

#### Стандарт IEC 60079-15

Двигатели, поставляемые с конверторами, должны проходить испытания вместе с указанным конвертором или с аналогичным конвертором, имеющим такие же характеристики выходного напряжения и тока.

Испытания должны выполняться с применением датчиков или измерительных устройств, которые будут использоваться при обычной эксплуатации.

В описательной документации на двигатель должны быть указаны все необходимые параметры и условия, которые требуются для использования с конвертером.

Альтернативные типовые испытания (расчетные)

В качестве альтернативы типовым испытаниям температурный класс двигателя можно определить расчетом, опираясь на ранее установленные данные репрезентативных испытаний.

Определение температурного класса расчетным методом должно быть согласовано между производителем и конечным пользователем.



#### Стандарт IEC 60079-15

# Дополнительные испытания на возгорание для больших машин или высоковольтного оборудования

#### Испытание конструкции короткозамкнутого ротора

Испытания должны проводиться на машине, оснащенной статором и ротором, которые аналогичны готовой машине в отношении конструкции сердечника статора и его обмоток, а также конструкции короткозамкнутого ротора и его клетки.

#### 1. Процесс старения короткозамкнутого ротора

Короткозамкнутый ротор следует подвергнуть моделированному старению, которое включает проведение не менее пяти испытаний в режиме с заклиненным ротором.

#### 2. Испытания на возгорание

После испытаний на старение машина заполняется взрывоопасной газовой смесью или погружается в нее и выполняется 10 пусков при полном напряжении без нагрузки или 10 испытаний с зафиксированным ротором.

Испытательная взрывоопасная смесь не должна загореться.

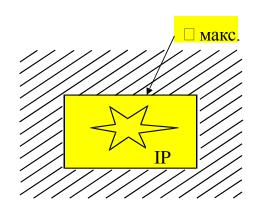


# Тип защиты для опасных зон

# Защита «Ex t»



Защита от возгорания пыли с помощью корпуса «t» (пыль - II 2 D)






#### Принципы защиты типа Ex t

#### Стандарт IEC 60079-31

Тип защиты от взрывоопасной пыли в атмосфере, в которой работают электрические устройства, обеспечивается с помощью пыленепроницаемой конструкции корпуса и разного рода способов ограничения температуры поверхности.



Ex tD A21 IP6X T135°C Ex tb IIIC T135°C Db В соответствии с предыдущим стандартом Согласно последней версии стандарта



#### **Термозащита**

Стандарт IEC 60079-31

Оборудование должно иметь встроенное реле термозащиты. Это устройство не должно сбрасываться автоматически.

#### Конструктивные соединения

Все соединения в конструкции корпуса должны быть эффективно защищены от проникновения пыли.

Примечание. Использование одной только смазки для поддержания целостности уплотнений не удовлетворяет этим требованиям.

#### Количество сцепленных витков резьбы

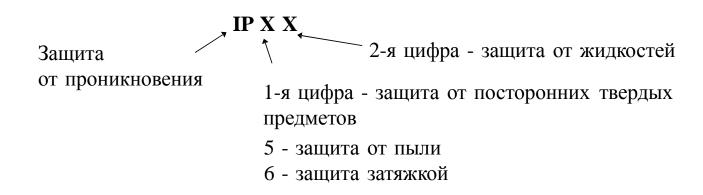
При отсутствии дополнительных уплотнений и прокладок должно быть сцеплено не менее пяти витков резьбы.



#### Уплотнения и прокладки

Стандарт IEC 60079-31

В соединениях могут использоваться сдавленные прокладки, чтобы гарантировать герметизацию корпуса.


Все прокладки и уплотнения должны быть цельными и неразрывными, то есть по периметру у них не должно быть разрывов.

Не считая небольшого количества смазки, необходимой для сборки, соединения с прокладками не должны сопровождаться нанесением герметика, исключая нанесение клея на одну из совмещаемых поверхностей.



#### Степень защиты оболочки ІР

#### Стандарт IEC 60079-31



# Защита от проникновения

| Степень защиты | IIIC | IIIB | IIIA |
|----------------|------|------|------|
| ta             | IP6X | IP6X | IP6X |
| tb             | IP6X | IP6X | IP5X |
| tc             | IP6X | IP5X | IP5X |



### Испытания IP - вода









### Испытания IP - вода











### Испытания IP - пыль









